MEMS characterization for Biology and Medicine

MEMS and microstructures are key basic and cross-sectional technologies for an extremely wide range of medical and biological applications. The scope of use ranges from lab-on-a-chip applications with high-frequency surface waves for rapid medical diagnostics, to MEMS microphones for use in hearing aids, and ultrasonic transducers for medical imaging based on microsystems technology.

You can rely on the non-contact, microscope-based optical measuring technology from Polytec to determine the surface topography and dynamic properties of medical MEMS sensors and actuators. Microscope-based vibration measurement is also used in bionically inspired “technology transfer” from natural to technical systems to measure the biomechanics of insects’ hearing, for example.

Medical imaging, sonography and intravascular ultrasound applications

Micromachined ultrasonic transducers (pMUTs & cMUTs) are pushing the boundaries of real-time 3D medical imaging (sonography) in applications such as IVUS (intravascular ultrasound) and echocardiography. To characterize the micromechanics of these transducer elements, measurements must be performed at high frequencies (~10 MHz) and with a high spatial resolution (<1 μm). The various possibilities offered by Polytec’s Micro System Analyzer provide this information for pMUT and cMUT development with maximum precision and zero contact.

Microstructure characterization

Your PolyXpert in Vibrometry