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Structural Damage in Components is Often  
Invisible from the Outside. However, Ultra- 
sonic Waves Can Be Used for Structural  
Health Monitoring (SHM). The Propagation 
of Waves and Their Interaction With Defects 
Can be Measured and Displayed in a Cont-
actless, Full-Surface, High-Precision Manner 
Using Scanning Laser Vibrometry.
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This article briefly describes the principles of the ultra- 
sonic waves used, called Lamb waves, as well as 3D 
scanning laser vibrometry. The main part of the article  
presents measurement results obtained with this 
technique, using both the propagation of waves and 
their interaction with defects.

Lamb Waves for Defect Identification

The standard method for the detection of defects in  
safety-critical components is the scanning of plates/ 
panels using ultrasonic transducers. However, this 
method generally requires that either the transmitter 

Scanning Laser Vibrometry for Structural  
Health Monitoring Using Ultrasonic Surface 
Waves

and receiver are on opposite sides of the panel or, in 
the so-called „back-wall echo method“, on the same 
side and the transducers are coupled to the panel, for 
example using water, which in many cases is a limitation.
An alternative method is to observe the propagation of 
guided waves in the panel and their interaction with  
defects. In thin-walled load-bearing components – in 
the past made almost exclusively of metal sheet, but 
today increasingly made of reinforced carbon fiber 
reinforced plastic panels (CFRP) – waves propagate as 
flexural waves and compression waves within the plate.

1
Mode conversion 
from symmetric 
into asymmetric
Lamb waves at a 
structural defect
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Optical design of 
a laser vibrometer

2
Flexural and com-
pression waves 
in aluminum 
sheet over 250 
mm, true sheet 
thickness 1 mm, 
true vibration 
amplitudes less 
than 100 nm
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Figure 2 shows a cross-section through groups of flexural 
and compression waves in aluminum (actual measured 
data). Regardless of whether a material defect or struc-
tural damage is located on an inaccessible face or in the 
middle of the material, a wave, which can be monitored 
from the accessible face, interacts with it and thus its 
behavior is changed.

One way of monitoring defects during actual use in 
the field (for example, in panels during flight) is the 
installation of piezo-based sensor-actuator networks. 
The sensor signals can be used to determine the state 
of the component. In order to accurately evaluate these 
pointmeasured signals, the behavior of the waves must 
be continuously observed over space and time in the 
research and development phase – this is the only way 
to gain insight into the complex physical processes.

This can be easily and effectively achieved using scan-
ning laser vibrometry. Furthermore, current vibration 

amplitudes in the high tens of nanometer range and  
excitation frequencies up to several hundred kilohertz 
can be achieved without difficulty. Scanning laser 
vibrometry is also highly suitable for the layout of such 
piezo-sensor networks. In addition, it represents an  
independent method for defect detection in cases  
where traditional ultrasonic transducer methods are  
not practical.

3D Scanning Laser Vibrometry

A 3D Scanning Vibrometer is a measuring system for  
the contactless and interferencefree measurement of  
3D vibrations in mechanical structures.

The method is based on the optical Doppler effect, 
which causes light waves scattered from moving sur- 
faces to undergo a change in frequency, where the  
change is dependent upon the movement. The frequency 
change is directly proportional to the instantaneous 
value of the vibration velocity and, in spite of its remark- 
ably small relative value of less than 10-8, it can be  
precisely determined using interferometric methods.
For this purpose, inside the vibrometer, the back-scatte-
red laser light is compared to a reference beam whose 
frequency has been shifted by a defined amount  
(heterodyne process, see fig. 3). Only the velocity 
component in the beam direction has an effect on the 
Doppler frequency shift. A 3D Scanning Vibrometer  
(fig. 4) is therefore used to completely measure the  
velocity vector at the measuring point.
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4
A 3D Scanning 
Vibrometer for 
full-field measu-
rement to detect 
both out-of-plane 
and in-plane 
motions 

It uses three independent, differently oriented laser 
beams to fully measure the movement of each measu-
rement point. In addition to the standard FFT vibration 
analysis mode, it‘s also possible, for wave monitoring, to 
measure in the time domain. If experimental repeatabili-
ty can be guaranteed, an identical burst signal is applied 
to the actuator to excite waves for each point of the 
scanning grid, and is repeated for each point. So that in-
dividual measurements are correctly synchronized with 
each other, the time interval between the start of measu-
rement and excitation must be identically triggered each 
time, resulting in no transfer functions. The capture and 
storage of a reference signal is not absolutely essential in
this case.

In laser vibrometry the area is segmented by the scan-
ning grid, while the time signal is recorded quasi-conti-
nuously. Therefore this method differs fundamentally
from, for example, holography and ESPI (electronic 
speckle pattern interferometry), in which the area is 
measured quasi-continuously over the observed surface, 
but the time is measured in discrete steps. Through 
automated scanning, a single set-up process is sufficient 
to permit complete capture of the data record in terms 
of time and position. 

3D SCANNING
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1D Scanning Laser Vibrometry:  
Observation of Oblique Vibrations

1D scanning systems require one-dimensional vibrations 
in the direction of the non-deflected laser axis (usually 
the z-axis). In this case, the velocity vector of a scan 
point only has component vz = v (see fig. 5, left).

Vibrometers essentially measure the velocity component 
in the direction of the laser axis, so that the measured 
variable vMeas1D must be divided by the cosine of the 
deflection angle α to obtain the vibration velocity vz :

If the vibrations are no longer one-dimensional in the 
z-direction, as is the case for Lamb waves, this cannot  
be compensated by the angle correction feature of the 
Polytec Scanning Vibrometer software. The velocity  
vector v of a scan point is then rotated away from the 
z-axis by the angle α. The vibration detected by the 
vibrometer is furthermore the component parallel to  
the laser axis, in this case vMeas.
Figure 5 right indicates the geometric relationships:

Via the equation

the angle correction feature of the PSV software corrects 
the deflection angle of the laser. According to the Carte-
sian decomposition of v, the z component is 

Accordingly, the error factor is 

Therefore, if a pure z-vibration occurs (β = 0) or if the 
laser beam is exactly perpendicular to the surface  
(α = 0), here is no error. If at least one of the angles 
approaches 90°, the error becomes infinite. In PSV sys-
tems, the laser can be pivoted through 20° about each 
of two spatial axes, so that consequently a maximum 
angle α = tan–1 (√2 tan 20º) = 27,24º results.

In figure 6, the mentioned error factor is marked in blue 
for the valid α range for various values of β (0°, 22,5°, 
45°, 67,5°, 80°, 89°). 
Shown additionally in red is the error factor 

which results if the angle correction is deactivated in 
the data acquisition software. Only for  β = 0° does this 
result in an error factor < 1, otherwise the error is slightly 
smaller than when angle correction is activated. How-
ever a quantitative analysis of the data remains invalid.

The error has a positive effect on purely qualitative 
investigations using 1D vibrometers where it increases 
the signal-to-noise ratio of the out-of-plane amplitudes 
of symmetric Lamb waves. Quantitative studies, how-
ever, require a 3D measurement system or can only be 
performed at points where the laser beam is directed 
normally to the surface.

vz =
vMeas1D

cos α 

vzDisplay =
vMeas

cos α 

= = tan α tan β +1
vzDisplay v cos (β - α)

vz v cos α  v cos β  

=
vMeas cos (β - α)

vz cos β  

vMeas =  v cos (β - α)

vz =  v cos β

5
Geometric 
conditions of 
the deflected 
laser beam and 
velocity vector of 
a scan point (left: 
one-dimensional 
vibration, right: 
multidimensional 
vibration)

Meas1D

Meas

zDisplay
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6
Error factor for 
out-of-plane 
amplitudes 
during 1D scan-
ning of oblique 
vibrations:  
β = 0°, 22.5°, 
45°, 67.5°, 80°, 
89° (increasing 
gradient) for 
active (blue) and 
deactivated angle 
correction (red)
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Above:  
Propagation of 
symmetric (outer) 
and antisymme-
tric (inner) Lamb 
waves in an 
aluminum plate. 
Below: 
Dispersion of 
Lamb waves in 
an aluminum 
plate. (Solid 
lines: symmetric 
modes, dashed 
lines: anti-sym-
metric modes, 
bold: fundamen-
tal modes. Blue: 
Compression 
waves according 
to assumption of 
plane stress, Red: 
flexural waves 
according to 
Kirchhoff theory)

Ultrasonic Waves in Plates Theory of Lamb Waves

As mentioned above, waves in plates propagate as 
flexural and compression waves (in-plane shear waves 
are not considered here). In 1917 Horace Lamb1 was 
the first person to arrive at an analytical solution to the 
Navier-Lamé differential equation  

(λ + μ)  (  · ) + μ  · ( ) = ρ

for a homogeneous, isotropic, ideally elastic continuum 
bounded by two planar surfaces – that is, for example, 
for waves in a metal sheet or plate. The solution, referred 
to as the Rayleigh-Lamb frequency equation,

where p =               - k2     and  q =             - k2

with the (circular) wave number   k = 

   and

are the known Lamé constants (to be determined from 
Young‘s modulus and Poisson‘s ratio) and ρ is the den- 
sity of the material, gives information about the disper-
sion behavior, that is the frequency dependence of the 
phase velocity c, of the waves under consideration as 
well as their multi-modality. For each excitation frequen-
cy there are at least two solutions to the equation and 
thus at least two wave modes. The first two solutions  
are referred to as fundamental modes, S0 und A0, and 
occur for each ƒ respectively ω > 0. They are shown 
in the numerical evaluation of the equation in figure 7 
below as the bold curves. The solid lines represent the 
phase velocities of symmetric Lamb waves (compression 
waves), which were calculated from the equation with 
the exponent equal to +1, the asymmetric modes (flexu-
ral waves) are shown as dashed lines calculated with the 
exponent equal to -1.

When representing such dispersion diagrams, it is 
common (as done here) to apply phase velocities via 
the frequency-thickness product of the plate, so that a 
diagram is valid for any plate thickness.

More detailed explanations of the theory of Lamb waves 
can be found in Structural Health Monitoring by Victor 
Giurgiutiu2.

=
tan pd

tan qd 

(k2 - q2)2 ±1

4k2pq
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1  Sir Horace Lamb, English mathematician and  
physicist, 29.11.1849 – 4.12.1934

2  Giurgiutiu, Victor: Structural Health Monitoring  
with piezoelectric wafer active sensors
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Alongside the exact description of Lamb waves based 
on the mathematics of continuum mechanics, compres-
sion and flexural wave characteristics can also be derived 
from simplified plate theories. At low frequencies, the re-
sults obtained in this way are consistent with those from 
Lamb wave theory. However, at higher frequencies, the 
simplifications lead to enormous errors. The non-disper-
sive plate compression wave velocity (red curve) from 
the assumption of plane stress 

corresponds to the S0 phase velocity, and the flexural 
wave velocity (blue curve) from Kirchhoff plate theory   

corresponds to the A0 phase velocity. The diagram indi-
cates overlap and deviation areas. 

Figure 7 above shows the out-of-plane displacement 
field from a 1D measurement of Lamb waves (S0 and A0 
modes) in an aluminum plate after a burst excitation by 
a piezoceramic actuator in the middle.

Theory of Ultrasonic Waves in Composite  
Fiber Panels

Lamb wave theory only applies with the following 
limitations:

 ■ ideal elasticity,
 ■ homogeneity, and
 ■ isotropy.

A good approximation to ideal elasticity can be assu-
med (in the technically relevant frequency range) for 
fiber-plastic composites based on thermoset matrix 
materials. For materials with greater internal damping 
this simplification cannot be assumed. By definition, 
homogeneity is as inapplicable to fiber composites as 
isotropy. The anisotropy of the elasticity parameters 
causes deviations of the wave fronts from the circular  
to varying degrees.

And numerical calculation methods such as the finite 
element method quickly reach their limits in the pre-
diction of the propagation and interaction behavior 
of waves. The realistic modeling of individual carbon 
fibers would be associated with unacceptably high 
costs, however each simplification requires experimental 
validation of its replace admissibility with acceptability. 
Therefore, measurements are essential for modelling the 
propagation of Lamb waves.

8
Propagation of 
compression  
waves in a 
strongly anisotro-
pic carbon fiber 
reinforced plastic 
panel

9
Symmetrical 
(compression) 
wave fronts with 
greatly magnified 
amplitude from a 
1D measurement

10
1D (out-of-plane, 
left) and 3D mea-
sured data (all 
three movement 
components x, 
y and z, right) 
of compression 
waves in an 
anisotropic panel

1 E
ρ1-v2CL =

D E  ω
ρ h 12 ρ (1 - v2)CF = =

4 4   ω h
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Figure 8 shows a typical example of the propagation of a 
compression wave (S0 Lamb wave) in a strongly anisotro-
pic composite fiber panel. The data record was captured 
using a 1D Scanning Vibrometer. The wave was excited 
by a sinusoidal burst signal applied to a piezoceramic 
actuator in the middle of the panel. Due to the differen-
ce in the phase velocity of the two fundamental wave 
modes excited in this way, the wave groups are separa-
ted from each other and can be individually observed. 
The middle is recessed due to the amplitude increase in 
the proximity of the actuator.

3D Scanning Vibrometry for Wave Observation

The vibration amplitudes for Lamb waves are small – a 
few hundred nanometers at wavelengths in the millime-
ter to two-figure centimeter range. So that the waves 
can be easily visualized, the amplitudes are shown 
(fig. 9), with a greatly magnified height. Such a spatial 
visualization is no problem for 1D measured data. How-
ever, with spatial movement and considerable in-plane 
components, the movement trajectories of differently 
vibrating points in the animation can overlap each other 
and thus suggest a false distortion profile.

Therefore it is advisable to assess the data obtained from 
3D scans either using the color palette and largely for-
going the geometric animation, or to visualize the three 
vibration directions separately as 1D representations. 
Figure 10 again shows the propagation of symmetric 
waves in an anisotropic plate from figure 8, but this 
time the results are shown contrasting with each other 
as 1D (left) and 3D measurements (right). The images 
show the same section of the same experiment. In 3D 
representation space, however, the software cannot al-
locate an unambiguous sign in general, hence the color 
palette only extends over the unsigned contributions of 
the amplitudes. On the left then, green and red stand 
for negative and positive amplitudes, while on the right 
green stands for stationary and red represents a high 

amplitude of any sign. Consequently, on the right, the 
wavelength appears halved, which must be considered 
in the evaluation.

In the following, all 1D representations are shown in 
green-black-red and all multidimensional representations 
are shown in green-red.

In experiments on (flat) CFRP panels, the obvious solu-
tion is to define the measuring surface in the x-y plane 
and to align the x- and y-axes of the Cartesian coordi-
nate system of the software with the main axes of the 
panel under test, as was done in the present case. Thus, 
in a simple way, the in-plane and out-of-plane amplitude 
components are displayed.

Figure 11 shows the experiment broken down into its 
movement components:

 ■ In-plane, x component
 ■ In-plane, y component
 ■ Out-of-plane, z component
 ■ In-plane, x-y component

It is apparent that the compression waves mainly genera-
te vibrations in the plane of the plate and in this respect, 
the most significant fraction of the vibrations occur in 
the propagation direction. Where out-of-plane vibration 
is concerned, only light shadows are identifiable for 
the same scale. The more slowly propagating antisym-
metric flexural waves can be identified in the middle 
of the plate in the z-amplitudes. Its movement fraction 
is greater out-of-plane than in-plane. However, this 
statement is only true up to certain limiting frequencies 
in which the actual situation is reversed, and is angularly 
dependent in anisotropic materials. The ratio of bending 
to longitudinal stiffness of the plate, both anisotropic 
and directional values, have an influence on the cut-off 
frequency.

11
Compression 
waves in an 
anisotropic panel: 
Amplitudes in the 
x (left), y (above), 
z (center),  and  
x+y direction 
(below)
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Detection of Structural Damage Caused  
by Wave Interaction

As mentioned in the introduction, structural damage 
and material errors are frequently indistinguishable. An 
important example is impact damage to CFRP structures, 
which often manifests as delamination, i.e. detachment 
of individual laminate layers from each other. 

Damage Detection Experiment 

3D measurements are carried out on an undamaged, 
quasi-isotropically laminated CFRP panel to obtain refe-
rence data. The excitation is provided by a sine-windo- 
wed burst signal                                       of two sine wave 
periods in length applied to a piezoceramic wafer, with 
the measurements taking place in the time domain. 
Figure 12 shows the signal and its amplitude spectrum. 
Application of the window reduces the unwanted 
secondary maxima in the spectrum. The experiment is 
repeated for different excitation frequencies. Initially, a 
group of compression waves passes through the obser-
vation area, subsequently, be cause of the lower phase 
velocity, a group of flexural waves. To cause an area of 
impact damage, a drop hammer with a kinetic energy 
of 2.5 J and a circular im pact area of 12.5 mm2 (fig. 13, 
above) strikes the rear side of the panel. This results in 
an impression on the surface of 0.05 mm in depth (fig. 
13, below).

The measurements were repeated under the same con-
ditions after the damage. Figure 14 shows a snapshot of 
the out- of-plane velocity field in the observation area 
before (above) and after (below) the impact event. By 
way of example, a 50 kHz excitation was used here.

In the lower snapshot, the defect is faintly identifiable 
due to the circular secondary waves. The difference 
between the two data records is imaged using the sig-
nal processor (software option PSV 8.7 or higher) or via 
MATLAB. Figure 15 shows, at left, only the out-of-plane 
components; at center, only the in-plane components; 
and, at right, all the vibration directions simultaneously.

The difference data give a clear indication of the position 
of the structural damage. Here also it is clearly apparent 
that out-of-plane vibrations give much clearer results 
than in-plane vibrations.

Not apparent from the still photos is the fact that not 
only does the passing of the primary S0-group (fig. 16, 
left), but also the subsequent passing of the A0-group 
(fig. 16, right), give rise to new flexural waves forming 
around the damage. However, the difference image 
(fig. 15) shows greater secondary waves for the primary 
A0-group. 

12
Excitation signal 
in the time do-
main (upper) 
and correspon-
ding amplitude 
spectrum (lower)

13
Above:  
Front face of the 
drop hammer 
Below:  
Impression after 
the 2.5 J impact

v = sin(ωt) * sin(    ωt) 1
4
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Summary
The observation of Lamb wave propagation using 
scanning laser vibrometry is a promising tool for damage 
detection in panel structures. The measurements allow 
the observation of both compression and flexural waves. 
The propagation of the entire wave field is made visible, 
thus permitting conclusions to be made about the struc-
tural properties. Systematic errors, which always arise 
using 1D measuring technology, can be avoided using 
3D measuring technology and allow for more precise 
results to be obtained.

Defects are visualized as distortions in the wave field, 
primarily in the form of secondary waves created from 
mode conversion. Therefore, using this method, defects 
can be detected in samples where it would not be 
possible to detect them using conventional ultrasonic 
testing or where it would only be possible with consi-
derable extra expense and complexity.
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14
Out-of-plane 
velocity field 
before (above) 
and after (below) 
the impact

15
Difference data 
(Left: out-of-
plane, Center: 
in-plane, Right: 
all components)

16
Primary compres-
sion waves (left) 
and flexural wa-
ves (right) in the 
measuring area 
after impact at 50 
kHz (out-of-plane 
velocity fields)
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