

## Features

4 channel analog interface TEDS4BNC
 4 widely accepted BNC front connectors
 *U*tra wide *D*ynamic inputs cover every signal
 1V to 23V input-voltage range (8.5Veff)
 Low noise (typically 3µV<sub>20Hz-20kHz</sub> input-referred)
 15kΩ input resistance

4x 4.7mA center contact current supply Capable of reading and writing TEDS inside sensors

IEEE1451.4 Class 1 MMI, shared signal wire

- Simultaneous 30bit A/D-conversion at 48/96/192kS/s Auto-calibration for offset reduction
- Advanced Record-Trigger capability Adjustable between start and end of recording Activated by software, hardware or input-voltage
- 32bit recording makes gain-setting obsolete
- 1.5GB cPCI-independent onboard real time memory
   16MS / input for up to 349s recording time

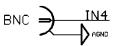
(48kS/s)

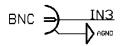
- Concurrent cPCI-streaming up to the limits of the harddisk (96/192kS/s down-sampled to 48kS/s)
- Nonvolatile calibration and configuration memory
- Onboard voltage and temperature monitoring
- Full Color RGB status LED (marked STA)
- Low power consumption (6W typically)

# Description

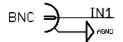
The ICDC101 is a low noise 3U 4HP cPCI slot-in card with automatic offset-calibration, offering 4 *U*tra wide *D*ynamic 1V to 23V inputs for the common 2...20mA current supplied sensors better known by their registered trademarks ICP®, DeltaTron®, Isotron® and Piezotron®.

Plugged sensors are recognized and in case they have a transducer electronic data sheet (TEDS) inside it can be read and written. Each of the 4 ICDC101 channels utilizes a combination of two advanced multi-bit delta-sigma analog-to-digitalconverter channels to achieve an overall A/Dresolution of 30bit for outstanding 131dB(A)





## BNC front connector scheme






dynamic. Concurrent capabilities allow for highchannel recording with many cards (1.5GB onboard RAM) and longtime streaming. Results of the factory-gain-calibration are stored in a nonvolatile memory and used for compensation while measuring.

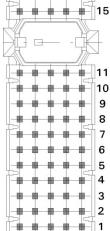












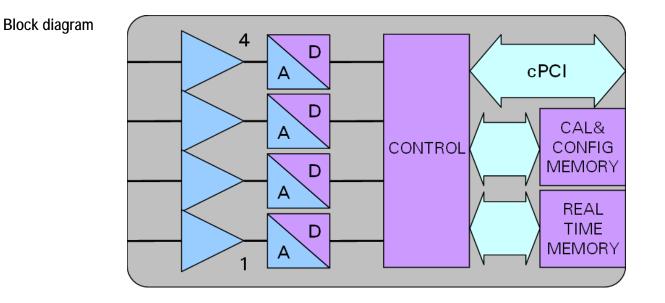

# cPCI J2 connector scheme (not standardized)

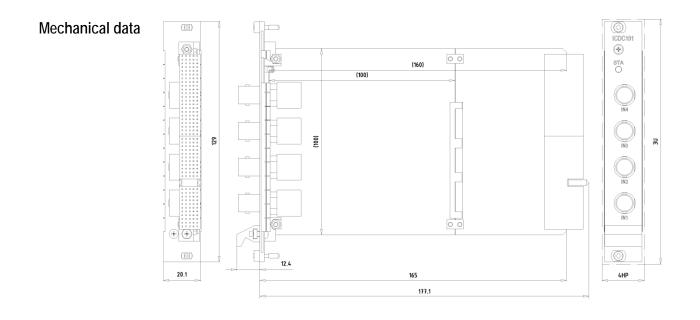
| edcba                                                                                                                                        | е          | d              | С         | b            | а        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------|--------------|----------|--|--|--|
| <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |            |                |           |              |          |  |  |  |
| <b>││││││││</b> │ 21                                                                                                                         | AGND       | RC_ENA         | AGND      | PGA0         | PGA1     |  |  |  |
| <b>+</b> + + + + + + 20                                                                                                                      | AGND       | GND            | AGND      | PGA2         | PGA3     |  |  |  |
| <u>↓</u><br><u>+</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                        | AGND       | PGA4           | AGND      |              |          |  |  |  |
| <b>│ ॑ + + + + + +   18</b>                                                                                                                  | +6V5       | GND            | AGND      |              |          |  |  |  |
| <del>                                  </del>                                                                                                | +6V5       | RS2_TX         | +6V5      | GND          | /RS2_TX  |  |  |  |
| <u><u></u><u></u><br/><u></u> <u></u> </u>           | +6V5       | GND            | +6V5      | /RS2_RX      |          |  |  |  |
| <b>│ + + + + + + + + + + + + 1</b> 15                                                                                                        | +6V5       | RS2_RX         | +6V5      | GND          |          |  |  |  |
| <del>                                  </del>                                                                                                |            | GND            |           | /ENA_RECTRIG |          |  |  |  |
| <u><u></u><u></u><br/><u></u> <u></u> </u>           |            | RS1_RX_TTL     | VIO       | GND          |          |  |  |  |
| <b>│ ⊕ ⊕ ⊕ ⊕ ⊕    12</b>                                                                                                                     | RS2_TX_TTL | GND            |           | /ENABLE      |          |  |  |  |
| <del>                                  </del>                                                                                                |            | RS1_TX_TTL     | VIO       | GND          |          |  |  |  |
| <del>                                   </del>                                                                                               | RS2_RX_TTL | GND            |           | /SHUTTER     |          |  |  |  |
| <del>                                   </del>                                                                                               |            | /RECTRIGGER    | VIO       | GND          |          |  |  |  |
| <u>↓</u><br>↓<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                                              |            | GND            | AUXIOP3   | /STOPSTREAM  |          |  |  |  |
| Í∰÷÷÷÷÷∏7                                                                                                                                    |            |                | VIO       | GND          |          |  |  |  |
|                                                                                                                                              |            | GND            | AUXIOP2   | /SYNCHRONIZE | FPGA_TDO |  |  |  |
| <u>↓</u><br>↓<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                                              | FPGA_TCK   |                | VIO       | GND          | FPGA_TDI |  |  |  |
| ╓╋╋╋╋╢4                                                                                                                                      | FPGA_TMS   | GND            | AUXIOP1   |              | VIO      |  |  |  |
|                                                                                                                                              | /FPGA_CE   | FPGA_CONF_DONE | +3V3      | GND          |          |  |  |  |
|                                                                                                                                              | /FPGA_CS   | /FPGA_CONFIG   | FPGA_DCLK | 24576KHZ     |          |  |  |  |
| [ <del>*</del> ++++++++++++++++++++++++++++++++++++                                                                                          | FPGA_ASD   | FPGA_DATA      | +3V3      | GND          |          |  |  |  |

# cPCI J1 connector scheme (standardized)

|        |    | ``    | /     |       |        |         |
|--------|----|-------|-------|-------|--------|---------|
| b a    |    | е     | d     | С     | b      | а       |
| 2      | 25 | +5V   | +3V3  |       |        | +5V     |
| 2      | 24 |       | AD0   | VIO   | +5V    | AD1     |
| 2      | 23 | AD2   | +5V   | AD3   | AD4    | +3V3    |
| 2      | 22 | AD5   | AD6   | +3V3  | GND    | AD7     |
|        | 21 | C/BE0 | M66EN | AD8   | AD9    | +3V3    |
| 2      | 20 | AD10  | AD11  | VIO   | GND    | AD12    |
|        | 9  | AD13  | GND   | AD14  | AD15   | +3V3    |
|        | 8  | C/BE1 | PAR   | +3V3  | GND    | /SERR   |
| TTU    | 7  | /PERR | GND   |       |        | +3V3    |
| TTU    | 6  | /LOCK | /STOP | VIO   | GND    | /DEVSEL |
| T Tell | 5  | /TRDY |       | /IRDY | /FRAME | +3V3    |




e d c


| blanks are not connecte | d on the card |
|-------------------------|---------------|

| C/BE2 | GND  | AD16 | AD17  | AD18  |
|-------|------|------|-------|-------|
| AD19  | AD20 | +3V3 | GND   | AD21  |
| AD22  | GND  | AD23 | IDSEL | C/BE3 |
| AD24  | AD25 | VIO  | GND   | AD26  |
| AD27  | GND  | AD28 | AD29  | AD30  |
| AD31  | CLK  | +3V3 | GND   | /REQ  |
| /GNT  | GND  | /RST |       |       |
|       |      | VIO  |       |       |
|       | +5V  |      |       | /INTA |
| TDI   | TDO  |      | +5V   |       |
| +5V   | +12V |      | -12V  | +5V   |











206g





## Absolute maximum ratings

| Parameter         |                                                   | Min                          | Max              | Unit             | Remarks                                                                                                                                                          |
|-------------------|---------------------------------------------------|------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +3                | 5 to AGND<br>5V to GND<br>V3 to GND<br>/IO to GND | -0.3<br>-0.3<br>-0.3<br>-0.3 | 8<br>6<br>4<br>4 | V<br>V<br>V<br>V | Stresses above these may cause permanent damage.<br>This is a stress rating only; functional operation at these or any other<br>conditions above is not implied. |
| Analog inputs to  | AGND*                                             | -12                          | 24               | V                | Exposure to absolute maximum rating conditions for extended periods                                                                                              |
| Digital inputs to | GND                                               | -0.3                         | 4                | V                | may affect reliability.<br>Only one absolute maximum rating may be applied at any one time.                                                                      |
| Storage tempera   | ature                                             | -50                          | 125              | °C               | Only one absolute maximum rating may be applied at any one time.                                                                                                 |

\* Since the inputs are especially designed to fit to current supplied sensors like ICP<sup>®</sup>, special care must be taken to ensure ±100mA current limitation in measuring mode (0V to 24V) and TEDS mode (-12V to 0V).

## Conformity

| Electrical safety                   | complies with DIN EN 61010-1 |
|-------------------------------------|------------------------------|
| Electromagnetic compatibility (EMC) | complies with DIN EN 61326   |

# **Operating conditions**

| Parameter                  | Min | Тур | Мах | Unit | Remarks                                                      |
|----------------------------|-----|-----|-----|------|--------------------------------------------------------------|
| Power supply (+6V5)        | 6.3 | 6.5 | 6.7 | V    |                                                              |
| (+5V)                      | 4.7 | 5.0 | 5.3 | V    | voltages at the cPCI connectors J1+J2 must be guaranteed     |
| (+3V3)                     | 3.0 | 3.3 | 3.6 | V    | to be within these limits                                    |
| ( VIO )                    | 3.0 | 3.3 | 3.6 | V    |                                                              |
| Sensor supply (front)4.7mA | 3.7 | 4.7 | 5.7 | mA   | at center contact of each BNC connector, short-circuit-proof |
| Analog inputs IN to AGND   | 1   |     | 23  | V    | with current supplied sensor in measuring mode               |
| IN to AGND                 | -5  |     | 0   | V    | with current supplied sensor in TEDS mode                    |
| /SHUTTER and low           | 0   |     | 1   | V    | both these and also /STOPSTREAM must be pulled-up with       |
| /RECTRIGGER high           | 2   |     | 3.3 | V    | 220 $\Omega$ resistors to VIO on the backplane               |
| Temperature                | 0   |     | 70  | °C   | the air surrounding the card must be within these limits     |
| Relative humidity          | 10  |     | 80  | %    | not to be operated until condensation is evaporated          |

All other inputs and outputs are of the LVTTL-type (max-low=0.7V, min-high=1.7V).

/ENA\_RECTRIG, /ENABLE and /SYNCHRONIZE must be pulled-up with  $1k\Omega$  resistors to VIO on the backplane.

24576kHz is an input and shall be connected to a stable and accurate clock-source.

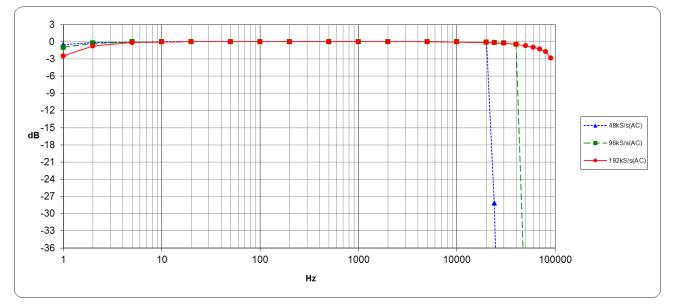
AGND and GND are not connected on the card.

AGND and GND shall be connected only once in the mainframe.

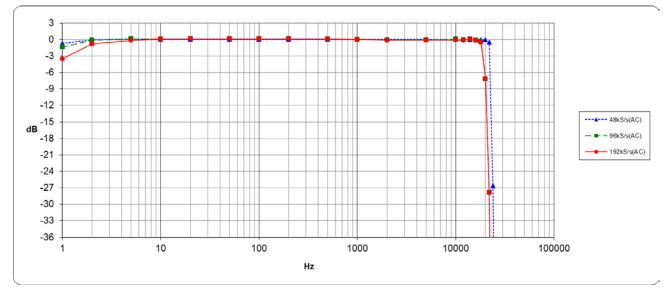




# Electrical characteristics


| Parameter                                  | Min | Тур   | Max   | Unit              | Condition                                 |
|--------------------------------------------|-----|-------|-------|-------------------|-------------------------------------------|
| Full-scale input-voltage                   | 7.8 | 8.5   | 9.2   | V <sub>eff</sub>  |                                           |
| Input-resistance                           |     | 15771 | 15928 | Ω                 |                                           |
| Input referred noise                       |     | 3.5   | 5.6   | μV <sub>eff</sub> |                                           |
| @ 48kS/s                                   |     | 3.3   | 5.6   | µV <sub>eff</sub> |                                           |
|                                            |     | 3.3   | 5.6   | µV <sub>eff</sub> | inputs connected to $50\Omega$ resistors, |
| @ 96kS/s                                   |     |       |       | •                 | 20Hz20kHz-weighted                        |
|                                            |     |       |       |                   |                                           |
| @ 192kS/s                                  | 107 | 101   |       |                   |                                           |
| Dynamic range @ 48kS/s (A-weighted)        | 127 | 131   |       | dB(A)             |                                           |
| @ 48kS/s (20Hz20kHz-weighted)              | 124 | 128   |       | dB                |                                           |
| @ 96kS/s (A-weighted)                      | 127 | 131   |       | dB(A)             |                                           |
| @ 96kS/s (20Hz20kHz-weighted)              | 124 | 128   |       | dB                | full-scale input related to noise with    |
| @ 96kS/s (20Hz40kHz-weighted)              | 120 | 125   |       | dB                | inputs connected to $50\Omega$ resistors  |
| @ 192kS/s (A-weighted)                     | 127 | 131   |       | dB(A)             |                                           |
| @ 192kS/s (20Hz20kHz-weighted)             | 124 | 128   |       | dB                |                                           |
| @ 192kS/s (20Hz40kHz-weighted)             | 120 | 125   |       | dB                |                                           |
| @ 192kS/s (20Hz80kHz-weighted)             | 118 | 122   |       | dB                |                                           |
| Total harmonic distortion + noise          |     | -68   | -66   | dB                |                                           |
| @ 48kHz                                    |     | -68   | -66   | dB                | most distorted channel                    |
|                                            |     | -67   | -66   | dB                | @ input 1kHz, 5V <sub>eff</sub> ,         |
| @ 96kHz                                    |     |       |       |                   | 20Hz20kHz-weighted                        |
| @ 192kHz                                   |     |       |       |                   | _                                         |
| Accuracy Offset-error                      |     | 656   | 8192  | LSB               | worst channel @ 192kS/s,                  |
| Input referred offset-error                |     | 3.69  | 46    | μV                | inputs connected to $50\Omega$ resistors  |
| Channel separation                         |     |       |       |                   | most disturbed channel related to         |
| Crosstalk @ 1kHz (800Hz1250Hz-weighted)    |     | -101  | -100  | dB                | driven channel @ input 5Veff,             |
| Crosstalk @ 10kHz (8000Hz12500Hz-weighted) |     | -99   | -80   | dB                | 192kS/s,                                  |
|                                            |     |       |       |                   | other channels connected to $50\Omega$    |
| Power supply current (+6V5)                |     | 693   | 1000  | mA                | measured with 100m $\Omega$ shunt-        |
| (+5V)                                      |     | 255   | 500   | mA                | resistors                                 |
| (+3V3)                                     |     | 248   | 300   | mA                | @ 192kS/s,                                |
| ( VIO )                                    |     | 3     | 20    | mA                | inputs connected to $50\Omega$ resistors  |
| Power consumption (+6V5)                   |     | 4.30  | 6.60  | W                 |                                           |
| (+5V)                                      |     | 1.28  | 2.65  | W                 | supply currents from above,               |
| (+3V3)                                     |     | 0.79  | 1.04  | W                 | voltages measured between                 |
| ( VIO )                                    |     | 0.01  | 0.07  | W                 | shunt-resistors and card                  |
| ( total )                                  |     | 6.38  | 10.36 | W                 |                                           |






# Frequency response

## Record-mode



# Streaming-mode







## UWD and how the user benefits from it

When it comes to measuring noise, vibration and other physical values spanning more than the human ear can capture noise in the upper frequency range is of concern for the measurement system. Unfortunately very few high-resolution A/D-converters reveal their noise behavior in the range above 20kHz, therefore our engineers had to gain experience over the years investigating in a lot of measurements. So far they think they have found the best single-chip 192kHz 24bit A/D-converter on the market, put it in the series of ADC10x Measurement Cards and were happy when they measured up to 121dB(A) dynamic and still 107dB at 20Hz to 80kHz because it was more than needed to cover the whole dynamic of the capsules we use in our microphone-arrays. Then our customers asked for additional inputs to connect their current supplied sensors like ICP® with TEDS inside and we started to design a card for those. Right at the start we had to learn that 121dB(A) dynamic was not enough for some of the more expensive sensors of this kind. The classic approach would have been to make use of an amplifier with switchable gain but we spent too much time in repeating overdriven measurements and because we were certain that also for our customers - time is money - we caused our engineers some sleepless nights asking for something better. What they came out with we call *uwD*, which stands for *u*ltra *w*ide *D*ynamic. This innovation surpasses the limitations of the best on market single-chip 24bit A/D-converters by achieving 131dB(A) dynamic and still 122dB at 20Hz to 80kHz.

## Theory of operation

Signals entering the card at the BNC connectors are passing ESD-protections and line-inductors where high-frequency-components are removed that the following amplifiers cannot damp sufficiently. Relays are switching the inputs between amplifiers and TEDS interface (IEEE1451.4 Class 1 MMI, shared signal wire) and they also permit calibration by connecting the amplifiers to  $50\Omega$  resistors. Low noise current regulators on a 24V source provide for sensor supply and detection circuits are implemented to spot their presence. Each channel's amplifier utilizes a low noise CMOS circuit with two different amplifications precisely adjusted by 0.1% resistors. Capacitors set the lower end of the frequency range to <1Hz and the upper end to >100kHz. A total attenuation of 48dB is achieved at half the oversampling-speed of the simultaneously sampling advanced multi-bit delta-sigma analog-to-digital-converters - low aliasing-distortions are the benefit. The converters offer selectable reduction-low-pass-filters for 48, 96 and 192kHz output rate. The digital control unit collects the serial 48bit data-streams from each converter's two channels and calculates a level and frequency dependant combination thereof factoring in the ratio of the two different amplifications resulting in a virtual *u*ltra wide *D*ynamic 30bit A/D-resolution followed by a filter where DC-offset is removed and output is optimized to 32bit words. Up to 16MS for each of the 4 inputs are stored in real time memory; when full, oldest data is overwritten by the latest. Streaming via the cPCI bus is performed simultaneously; 48kS/s is sent directly, 96kS/s and 192kS/s are down-sampled to 48kS/s. End-point of recording can be between Record-Trigger and 349 seconds later. The Record-Trigger can be released by cPCI-command, pulling down /RECTRIGGER at J2 or reaching at least one of four cPCI-register definable values (one for each of the four input-channels). /SHUTTER is a pull-down-activated bidirectional control-signal; it is available at J2 and can be sensed and released through cPCI. /SHUTTER is recorded in Bit0 of every channel and counted in a cPCI-register. Temperature-sensor, voltage-check, front-panel-RGB-LED and nonvolatile calibration and configuration memory are available to cPCI. During factory-calibration gains of all channels are measured and stored in this memory.





Information furnished by gfai tech is believed to be accurate and reliable. However, no responsibility is assumed by gfai tech for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice.

