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Abstract 
The new Porsche aero-acoustic wind tunnel opens great options for the automotive development 
process at Porsche. A very low background noise and the homogeneous flow characteristics al-
low the use of various measurement techniques and lead to an excellent quality and degree of re-
producibility of acoustic measurements. 

Especially in the early development stages a quick and reliable rating of aero-acoustic sound 
sources is important to fulfil the challenging requirements. For a localisation and detailed inves-
tigation of these aero-acoustic sources, a complex measurement system consisting of three single 
microphone arrays, was developed and installed. 

All arrays are fixed at a framework positioned out-of-flow, with the smallest possible distance to 
the test object. In order to prevent negative effects during aerodynamic testing, the whole system 
can be moved back to a parking position out of the test section area. 

The basic evaluation of the recorded microphone data is known as “acoustic camera principle” 
where acoustic source maps computed by special beamforming algorithms are mapped to an op-
tical image (2D) or the car surface (3D). 

The quality of these basic source maps (“dirty maps”) - given by the dynamic of the localized 
sound levels and the spatial source resolution - is mainly defined by 4 hardware parameters: 

 Array dimensions 5 m x 3 m each 

 Number of microphones 192 microphones each 

 Microphone layout irregular with an optimized layout 

 Measurement distance  automated positioning to 4 m 

By the use of advanced post-processing techniques, e.g. algorithms like CLEAN SC [12], it is 
possible to improve the results significantly. However, the better the basic result the greater the 
success using these enhanced software tools. 

Therefore great attention was paid to excellent properties of the mechanical installation as well 
as to a comfortable and fast data acquisition achieving an outstanding basic acoustic perfor-
mance. Hence, further activities have been started and various investigations were scheduled to 
advance the data analysis. 

The paper focuses on the first and terminated project phase: The development, design and instal-
lation of the system. Based on the results of several simulations and a study with real sound 
sources (loudspeakers with and without flow); the capability of the system is verified and the 
quality of first results is shown by means of a typical example. 

Introduction 
For a car manufacturer like Porsche, an outstanding sportive design and a great performance 
combined with a favourable passenger comfort and high efficiency are fundamentals to be re-
garded at all times. Therefore, the new Porsche wind tunnel is a very important tool in the aero-
dynamical and aero-acoustic optimization process, allowing evaluation of design- and material 
concepts as well as styling-driven shape decisions. The new Porsche wind tunnel was designed 
over several years and realized from 2011 to 2014 [14]. 
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Now, aero-acoustic development can be performed over the full velocity range up to 300 km/h, 
and due to very low background noise levels, the localisation and precise investigations of sound 
sources are possible using microphone arrays. The Porsche wind tunnel microphone array system 
was developed and built in cooperation with GFaI, Berlin and installed in January 2015. 

Basic Array Hardware 
The system consists of 4 data recorders, 3 microphone arrays, each equipped with 192 electret 
microphones and an integrated Full HD camera. Additionally 24 measuring channels are provid-
ed to record reference signals and the test conditions. A high performance working station is 
dedicated to the data acquisition and analysis, operated by special controller software, adapted to 
the Porsche wind tunnel. 

To achieve a high localisation accuracy of the acoustic sources, a signal sampling frequency up 
to 192 kHz is realized for each differential transmitted channel and a positional accuracy of  
± 1 mm is ensured for all microphones. This precision is reached up to maximum speed by a 
high stability and a low weight of the arrays resulting from a special sandwich construction inte-
grated in a lightweight reinforcing frame. 

Beamforming in a Wind Tunnel 
The result generated by an array system is called acoustic source map; superposed to an optical 
image or a 3D geometry of the considered object. The calculation of the source map is carried 
out using beamforming algorithms. 

A picture (2D) or model (3D), divided into a grid of points, is used to represent the object under 
investigation. For 2D applications, the grid is arranged in the scan plane with a known distance 
to the microphones in the array plane (Figure ). The evaluation of the runtime differences and 
amplitude decays of assumed sound sources between every grid point of the scan plane and eve-
ry microphone of the array plane leads to the basic source map (“dirty map”). This elementary 
beamforming algorithm can be applied in the time or frequency domain whereat the time domain 
“delay and sum” algorithm is well known in acoustic signal processing for many years now. 

In recent years more advanced frequency domain algorithms have been developed to improve the 
quality of the maps. In the frequency domain most algorithms base on the calculation of the cross 
spectral matrix (CSM). The CSM contains all cross spectra data of the microphone signals and 
therefore all level and phase information representing the runtime differences of the acoustic 
waves. By applying a so called steering vector to the CSM - to include the geometric information 
and distances - it is possible to calculate the source map. By the formulation of the steering vec-
tor, the focus of the evaluation can be directed to calculate exact levels or to a good source local-
isation in the source maps. 

The main diagonal of the CSM contains the auto spectra data of the microphone signals which 
are often dominated by the background noise. Thus it is possible to improve the dynamic range 
of the source maps by removing the elements of the main diagonal from the CSM. However the 
energy content and thereby the absolute levels of the source maps are not correct in that case. 

There are many publications in which the different methods and algorithms with their pros and 
cons are discussed in detail [2], [6], [7], [9], [13]. 

In a wind tunnel a shear layer appears between the flow region and the area in the plenum with-
out a major flow where the arrays are positioned. The flow around the test object generates 
sound sources radiating acoustic waves. These waves get strongly affected when passing the 
shear layer (Figure ). The shear layer causes diffractions of the acoustic waves and lead thereby 
to displacements and distortions in the source maps. For the application of beamforming in wind 



Aachen A

tunnels 
correcti

Amiet i
cy by re
to the ar

Unacco
er whic
shifts. 

F

With th
based o
[8] and 
plement
tion betw

To rate 
the freq
tion, typ

In Figur
The ma
beamfor
of the m

The bea
and bea
capabili
dimensi

Acoustics Co

to aero-aco
on accordin

ntroduces a
educing the 
rray and sca

unted in thi
ch lead to c

Figure 1: 

he Porsche A
on the CSM

a steering v
ted basic al
ween GFaI,

the perform
quency-depe
pically calcu

re 2 a typic
ain lobe rep
rming algor

main lobe an

amwidth (B
amwidth are
ity of an ar
ion, the num

lloquium 201

oustic sourc
ng to Amiet

a model wh
shear layer

an plane (Fi

is model are
correlation l

Sketch o

Array Syste
M with diago

vector form
gorithms w
, DLR Götti

mance of an
endent array
ulated by a 

cal PSF of t
presents the 
rithms. The 
nd the highe

BW) defines
e the basic i
rray. Both p
mber and lay

5  

ces, it is ind
[12]. 

ere the diffr
r to a flat an
igure ). 

e additional
losses of th

of wind tunn

em, most o
onal remova

mulation con
were validate

ingen, Volk

n array, the
y response t
simulation.

the Porsche
real source
dynamic ra

est side lobe

 the width o
indicators f
parameters d
yout of micr

 

dispensable 

fraction effe
nd infinite th

l scattering 
he signals w

nel shear lay

of the analy
al. An Ami

ncentrating 
ed in great d
kswagen gro

e Point Spre
to an omnid
 The result 

e arrays is p
e, whereas t
ange (DR) i
e.  

of the main
for the quali
depend stro
rophones an

to consider

ects are take
hin extent s

effects due 
with a degra

yer and para

ses are carr
iet shear lay
on an exact
detail in the
oup research

ead Functio
directional 
is also calle

plotted for t
the side lob
is defined by

n lobe at 3 d
ity of sound
ongly on th
nd the meas

r this shear 

en into acco
specified by

to the turbu
ading effect

ameters of th

ried out in 
yer correcti
t source loc
e context of
h and Porsc

n (PSF) can
point sourc
ed beam pat

he third-oct
bes are arte
y the differe

dB level dec
d source loc
e hardware

surement dis

1

r layer effec

ount with go
y its angle a

ulence in th
t evaluating

he Amiet mo

the frequen
ion modifie
cation is use
f an intensiv
che. 

n be used. 
ce with a de
ttern. 

tave band o
efacts gener
ence betwe

crease. Dyn
cation and t

e parameters
stance (focu

137 

ct, e.g. by a

ood accura-
and distance

e shear lay-
g the phase

odel. 

ncy domain
ed by Puhle
ed. The im-
ve coopera-

The PSF is
efined loca-

of 2500 Hz.
rated by the
en the level

namic range
thus for the
s: the array
us). 

a 

-
e 

-
e 

n 
e 
-
-

s 
-

. 
e 
l 

e 
e 
y 



13

Figur

Array Di
The requir
lower the f
ture enoug
or respectiv

To minimi
sions with 
frequencie
This effect

Taking int
lysed, the o
3 in additio
gation of h
rable result

Figure

Number 
The numbe
ta acquisiti
project bud

38 

e 2: Si

imension 
red size of a
frequency a

gh informati
vely phase 

ize the beam
a minimal 
s correlatio
t results in p

to account a
overall dim
on, the cent
higher frequ
ts, all array

e 3: Ov

and Layo
er of microp
ion system d
dget. Otherw

1

1 m 

imulated Po

an array firs
and thus the
ion of the ac
shifts in the

mwidth ove
focus are as

on losses in
phase errors

all these eff
mensions of t

tral part of t
uencies in a 
s (left, right

verall array
prefer

out of Mic
phones and 
defines a m
wise, to rea

B = 5 m 

1.5 m

int Spread F

st of all dep
e bigger the
coustic wav
e frequency 

er the whole
spired. Und

ncreases tog
s for distant 

fects and ad
the Porsche
the arrays (3
preferred m

t and on top

y dimension:
rred measur

crophone
thereby the

major part of
ach an excel

H

 

Function (P

pends on th
e wavelengt
ve. That mea

domain for

e frequency
der flow con
gether with 

microphon

djusting the
e arrays wer
3 x 2 m) ha

measuremen
p) were cons

 
: 5 x 3 m, ce
rement wind

es  
e number of
f the hardwa
llent dynam

= 3 m
0.5

PSF), f = 250

he lowest fre
th, the large
ans to meas
r the observ

y range, bas
nditions in a
the array d

nes. 

e arrays to 
re defined t

as been desig
nt window o
structed wit

ntre array: 
dow: 1.5 x 1

f measurem
are costs of 

mic range of

1 m5 m

Aachen Acou

0 Hz, F = 4 

equency to 
er the array 
sure enough
ed wavelen

sically maxi
a wind tunn
dimension a

the size of 
o 5 x 3 m. A
gned especi
of 1.5 x 1 m
th the same 

3 x 2 m, ext
 m. 

ent channel
f an array sy
f the source 

1.5 m

ustics Colloqu

m, DR = 21

be conside
dimensions

h runtime di
ngth. 

imum array
nel, howeve
and the flow

the cars to
As shown i
ially for the

m. To obtain
dimensions

tension: 3 x1

ls needed by
ystem limite

maps, as m

uium 2015 

dB. 

red. The 
s to cap-
ifference 

y dimen-
r, higher 
w speed. 

 be ana-
n Figure 

e investi-
n compa-
s. 

1 m, 

y the da-
ed by the 
much mi-



Aachen Acoustics Colloquium 2015   139 

crophones as possible should be applied. As a compromise, each Porsche array was equipped 
with 192 microphones. 

Another important point, especially regarding the dynamic range, is the layout of the micro-
phones. A lot of effort was provided to find the best arrangement of the microphones. Therefore, 
a completely new optimisation strategy was developed and applied by Dr. Hartmann from 
Volkswagen group research. 

The optimisation performed by a generic algorithm in combination with a gradient based search 
of local minima operates directly to all microphone coordinates – not just to some layout pa-
rameters. Thus, for 192 microphones with adjustable x- and z-positions 384 degrees of freedom 
have to be optimised.  

The target function for the optimisation was generated by a rating of weighted sums for each cri-
terion below: 

 beamwidth 

 distance of the main lobe to the highest side lobe 

 level of the highest side maximum 

 average of the side lobe levels in the preferred measurement window 

Further restrictions were introduced to concentrate microphones in the centre array. This could 
be important for the high frequency region if the use of a shading procedure to the outer micro-
phones could reduce negative correlation loss effects as discussed before. In this case only few 
microphones would be affected by shading. Future work is scheduled regarding this topic. 

The result of the optimization is an irregular microphone layout as depicted in Figure 4, where 
simulated source maps are compared to the best symmetric standard layout considered. 
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